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The Urban Heat Island (UHI) Effect

Oke (1987)
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Factors Contributing to UHI Formation

• Urban Energy Balance Equation

Rnet + QA = QH + QE +QG + QS

• Reduction in latent cooling (e.g. vegetation 
non-permeable surfaces)

• Increased surface temperatures (e.g. low 
albedo, high heat capacity)

• Anthropogenic heat (e.g. cars, HVAC, people 
etc.)
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Why should we care about UHIs?

• Electricity demand increases about 2-4% for 
every 1˚C rise in air temperature

– U.S. building electricity use $613 billion in 2006 dollars

• Mortality increases during heat waves

– 1995 extreme heat wave in Chicago, Illinois resulted in 
700 heat related death

• Production of some green house gasses increases 
with temperature (e.g. smog => ozone)
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Why should we care about UHIs?

<southwestclimatechange.org>
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What can/should we do about UHIs?

• UHI mitigation accomplished by Green Design 
and Engineering

<scholtensroofing.com>

<nissan.com>
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Oke (1987)

<malamamaunalua.org>

<liquidroof.net>

<corbisimages.com>

<malamamaunalua.org>
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Holistic Urban Energy Models

• Coupled conduction, radiation and fluid 
mechanics models (CFD) with meteorological 
and materials data in geometrically complex 
urban domains

• Necessary to evaluate complex feedbacks 
resulting urban design strategies

– e.g. “white roads”
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Large Eddy Simulation (LES)

• Powerful approach to model turbulent fluid 
motions over large spatial domains of O(km)

• Deterministically solve the Navier-Stokes 
equations for large scales of turbulence O(m)

• Apply a Sub-grid Scale model for fine scales of 
turbulence O(cm)

• Computationally cheaper than direct 
numerical simulation (DNS)

Anders Nottrott, NASA/C3P International Workshop on Environment and Alternative Energy 2010, La Jolla, CA, USA



Large Eddy Simulation (LES)

Kanda Laboratory, Tokyo Institute of Technology (2005) 

LES of wind speed contours – Shinjuku Ward, Tokyo, Japan 
(PALM; Raasch and Schroter, 2001)

Red = High speed fluid
Blue = Low speed fluid
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What about the wall?

• Near wall heat and mass 
transport cannot be 
resolved using LES 
because the energy-
containing scales become 
much smaller than the 
grid size O(cm) to O(mm)

• Specialized models called 
wall functions are 
necessary to estimate the 
convective surface fluxes
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Measurement of wall turbulence

• Comprehensive Outdoor Scale Model 
(COSMO) for urban atmospheric studies

Kanda (2005)Nottrott (2010)

Fine-wire 
Thermocouple 

Rakes
(32 sensors)

Sonic 
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Characterization of wall boundary 
layer
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~ 6 cm from the wall
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Characterization of wall boundary 
layer

• Average boundary layer profiles are consistent 
with natural convection
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Black = Data from previous studies (adapted from Tsuji & Nagano, 1988)
Red = Data from the present study (Nottrott et al, 2010)
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Natural convection mode

• In natural convection temperature waveforms are 
periodic

• Frequency of signal is related to the scale of 
structures in the boundary layer
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Forced convection mode
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• Upward gust of wind caused transition from 
natural to forced convection

• In forced convection waveforms are spiky 
and random
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Conclusions

• Holistic urban energy models must combine 
energy balance calculations with CFD

• Simplified convection models (wall functions) 
are used to estimate surface fluxes

• Accurate wall function parameterizations are 
difficult in urban environments where 
complex geometries and flow patterns exist
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